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THE UNSTABLE PLANE MOTION OF THE POISEUILLE TYPE 
FOR RIVLIN-ERIKSEN FLUID* 

A. GEORGESKU and S.S. CHETTI 

Exact unsteady solutions are sought, which describe a plane flow of the Poiseuille 
type for the Rivlin- Eriksen fluids for arbitrary pressure drop. All considered 
here flows become, after infinitely longtimes,a plane steady Poiseuille flow. In 
particular cases the results obtained here coincide with those obtained earlier in 
/l/. Certain statements formulated in /l/ without proof are strictly proved here. 

The unsteady plane flow of the Poiseuille type for Rivlin-Eriksen fluid between planes 
Y= &t is defined by the equations with initial and boundary conditions 

0 i au' 
dl= -alt_K,,l+s G(G), il) 

o=--$i((zS _L S,) d!L 2!!l 
a w 

where (u (u. t), 0) is the dimensionless velocity, P = P (2, Y. 0 is the pressure, R)O is the 
Reynolds number, S>O is the parameter of viscoelasticity, and uSl>O is the lateral veloc- 
ity parameter. From the second of Eqs.(l) follows that aplay is a function of only y and I 
and, consequently, P - h Cu. r) I i- f b, 0. Substituting this expression into the first of Eqs.(l;, 
we stipulate A (u, 1) = --f (1) , hence P = --f(t)z-l-g(~, I) when z is the axis parallel to the walls. 

On the assumption that function t(t) is given, we define velocity u by the first of Eqs. 
(1) and conditions (2). After that pressure aplay is determined by the second of Eqs.(l). 

The expression for p implies that the flow must be considered in a bounded region. Since 
the drop of controlling pressure depends on the motion of fluid, it is reasonable to determine 
it as in classic Newtonian case. 

(1 (I< 1) = 0: -tgy<i. tgo: C2j 
u (y. I) = 0. t > 0. y = =i 

The velocity ~1 satisfies conditions (2) and the first of Eqs.(l) in which dplar = i (11. 
Restricting the analysis to the consideration of velocities with exponential damping as t-.x. 
by the method of Laplace transformation, we obtain 

u(Y.:)= fWH(Y*L--T)dT. LE[O. -1. yE[--l,i] s I3! 

” 

H (1. 1) = 
m 4(-l)"(l+A,RS) . x 

lz n(h+l) 
cos ;T (2n + l)u erp(I,t) 

I 
n=o 

I, = - 
"'(2n+ 1)J 

bH+X'(2ntI)'HS 

Since O<l-!-RS&<l, &<O, the series for H (Y, 0 is uniformly convergent. Hence it is 

possible in formula (3) to exchange the signs of the integral and sum. Note that the uniform 

convergence not only of the series determining H but, also, of other series that occur below, 

can be proved on the basis of properties of h,. 
From the theory of Laplace transformations we have 

‘imubv 1) =hmhi(y. A) = h[A(~)]+(l _y1) =+(I --br~)~ (:_) 
L-0 n-0 A-0 

From this follows that all obtained here solutions approach the Poiseuille classic solu- 
tion. 
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It is known that in the case of plane steady Poiseuille flow for Newtonian fluids it is 
possible to specify either the pressure drop api& = -f (CO) or the friction (JuIJY)Y=*l = rRt(m) 

at the walls. 
Similarly in the Newtonian case Y (y, t) is uniquely determined by either aplaz or (Ju/Jy),=+, 

From formula (3) we obtain 

(G-%** cT f = f E 2 (1 + j.,,RS) 1 f (T) erp [h, (1 - r)] dT = 
R=wl 0 

* 

+dM(t--)dT 
0 

M (t - 7) > 0 

For a specified friction at the walls the obtained results is an equation of thevolterra. 

type, where f is a known function. As M(t-%)>O for any t> 0, (addy)ynk,=o for t = o, while 

M and (JuW,_fl are differentiable functions with respect to t in any interval (0,~). a>O, we 
conclude, in conformity with the Volterra theorem, that each of these equations has a unique 

solution. It is clear that for a given function f(t) we have a unique functions defining 

friction at the wall. 
Let us now consider the particular case of f (t) = P (1 - eXP (--ot)), P, o > 0, in which solu- 

tion (3) becomes the solution given in /l/. Representing function c in the form of suitable 

Fourier series, we.obtain the following formula: 

u (Y, f) = $ r 1 + c;;sh; 1 -1 (exp (- of) - I) + 

0 

c i6(- l)'+l PRocos [n(n +1/2)y] (2n+ lYd(o +a,) (exp (Q) - 1) 
n=O 

(4) 

h=l/‘&. y=r--I, 11, tE[O, 00) 

To obtain expressions for derivatives of u it is necessary to investigate addtionally 
their behavior at points y=&ti,where the respective Fourier series do not always converge 
to the expanded function. 

To find the derivatives we used the technique of reverse integration in conformity with 

/2/. It follows from formula (4) that 

au P sin hy -=_ 
al oh ,,,(axp(-W-i)- 
m 

8 (- i)n-1 
PRatsin[(n + i/2)v] 
(2R+1)8nB(O+Xn) @XP (%I~)- 1) 

y E i-i, 11, t E w, 00) 

p=-P(1- exp(-ef))z+(2S+ S,)(-$)'+canst 

The last expression showsthatpressure increases an account of Newtonian terms. Apply- 
ing formula (3) to the particular cases considered in /3/, we again obtain all the results of 

/3/. 
In the particular cases considered above the numerical computations were carried out for 

P = 1, S = 1, 2, 5, 10, 100,R = 1,4,10,100,0 = 2,10,100 and for different values of : and I/. 
0.5 
(1 3 

m 

The results of computations are shown in Fig.1 forP== 1, R= 1, O= 

:. 

10 by solid lines for S=l and by dash lines when S=lOO. Curves l- 3 
correspond to t equal 0.3, 5, and 100. These curves and, also, form- 

0.25 .\ 
ulas (3) show that when t=O the profile of velocity is a straight line 

\ U=O, YE (--i,l), for f>O, uis a positive increasing function of t 
\ 

f \ 
which as ~-CO approaches thePoiseuilleparabolic profile. The profile 
of velocity is symmetric about the z axis. Furthermore u is an increas- 

0 
--L?s yf 

ing function of P and independent of S,. 
Pressure increases with S,. 

Fig.1 
It will be seen that increasing R or 

o and decrease of S results in increasing velocity. 

The authors thank D. Chomentowski for discussion of some of the results and, also, V. 
Nilolae for help in computations. 
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